
Willkommen bei der NaMlx-Abschlussveranstaltung

- während der Veranstaltung bitte Mikro stummgeschaltet lassen
- Video zu Beginn bitte eingeschaltet lassen (wenn Ihre Kamera aus ist, können auch Sie andere nicht sehen)
- Fragen bitte jederzeit in den Chat stellen
- sollten technische Probleme auftreten, schreiben Sie per Chat bitte Alexandra Konrad
- Präsentation wird im Nachgang zur Verfügung gestellt

Uns allen nun eine spannende Veranstaltung!

NAMIX ABSCHLUSSVERANSTALTUNG

Benjamin Heldt | Daniel Krajzewicz | Serra Yosmaoglu | Emil Pabst

Institut für Verkehrsforschung

VEOMO

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Willkommen

NaMlx – Nachhaltige-Mobilität-Index zur Bewertung des standortbezogenen Mobilitätspotentials

- mFUND Förderlinie 1
- Laufzeit: 07/2022 bis 06/2023

Projektpartner

- DLR Institut f
 ür Verkehrsforschung
- Veomo Mobility GmbH

Assoziierte Projektpartner

- Landeshauptstadt München Mobilitätsreferat
- UnternehmerTUM

Benjamin Heldt

Emil Pabst

Daniel Krajzewicz

Alexandra Konrad

Serra Yosmaoglu

Rebekka Oostendorp

Agenda

Begrüßung und Einführung

10:00 Einwahl und Ankommen

Projektübersicht und Projektteam

Begrüßung durch Tim Rittmann (BMDV)

Der Nachhaltige-Mobilität-Index

Hintergrund

Idee und Vorgehen

Der Nachhaltige-Mobilität-Index

Demonstration des NaMIx-Tools

NaMIx und Planungspraxis

Diskussion und Abschluss

Q & A

Ergebnisse des Projektes

ca. 11:15 Ende der Veranstaltung

Warum ist es wichtig, das Potential für nachhaltige Mobilität zu bemessen?

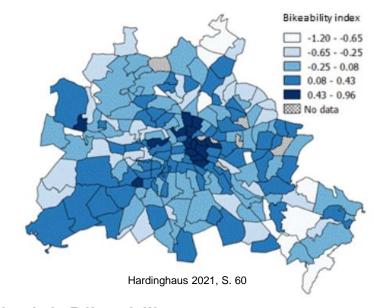
NaMIx im mFUND

Durch die Entwicklung eines datenbasierten Index zur Messung des Potentials für nachhaltige Mobilität tragen wir dazu bei:

- dass vorhandene Informationen besser verknüpft werden und dadurch
- die Effizienz im Bereich der Alltagsmobilität gesteigert wird,
- Angebote für nachhaltige Mobilität gezielter geplant und
- Verhaltensänderungen wahrscheinlicher werden.

Dabei:

- verwenden wir verschiedene Daten und evaluieren deren Eignung,
- finden wir heraus, welche Datenquellen zusätzlich benötigt werden.



Index-Methode

Möglichkeit der Messung und Darstellung sozialräumlicher Phänomene

- Indikatoren sind "Anzeiger für Sachverhalte"
- Zusammenfassung mehrerer Indikatoren zu einer neuen Variable, die häufig nicht direkt beobachtbar ist
- Komplexität reduzieren
- Normative Bewertung (was ist "gut", was "schlecht"?)
- Transparenz, Reduktion von Fehlern
- Verknüpfung der Indikatoren zu Index
- Gewichtung

Beispiel: Bikeability

α* Straßentyp + β * Kreuzungsdichte+ γ * Radwege an HS + δ Grüne Wege ...

α, β, γ, δ: Experteneinschätzungen

Was ist das Ziel eines Index für nachhaltige Mobilität?

Bestehende Indizes und Tools (Bsp.):

- WalkScore
- Mobilitätsindex (A. Rammert)
- GOAT (Plan4Better)

Nachhaltige-Mobilität-Index

- Daten zusammenführt und verständlich kommuniziert und DABEI
- unterschiedliche Verkehrsträger berücksichtigt UND
- kleinräumige räumliche Ebenen betrachtet, inkl. Standorte/Quartiere UND
- Möglichkeiten, nachhaltig mobil zu sein abbildet.

Vorüberlegungen – Nachhaltigkeit und Mobilität?

- Nachhaltigkeit in der Mobilität bedeutet (Holz-Rau & Jansen 2007):
 - Minimierung ökolog. Belastungen (z.B. Emissionen, Ressourcen) (ökologisch)
 - Sicherung ökonomischer Austauschprozesse (ökonomisch)
 - $\frac{1}{2}$ Teilhabe + Gesundheit aller; keine Belastung best. Gruppen (sozial)
 - → Mobilität, die Umwelt und Ressourcen schont und sozial gerecht ist
- kann durch drei Strategien erreicht werden (Banister 2008, UBA 2020):
 - Verkehrsvermeidung
 - Verkehrsverlagerung
 - Effizienzsteigerung des Verkehrs

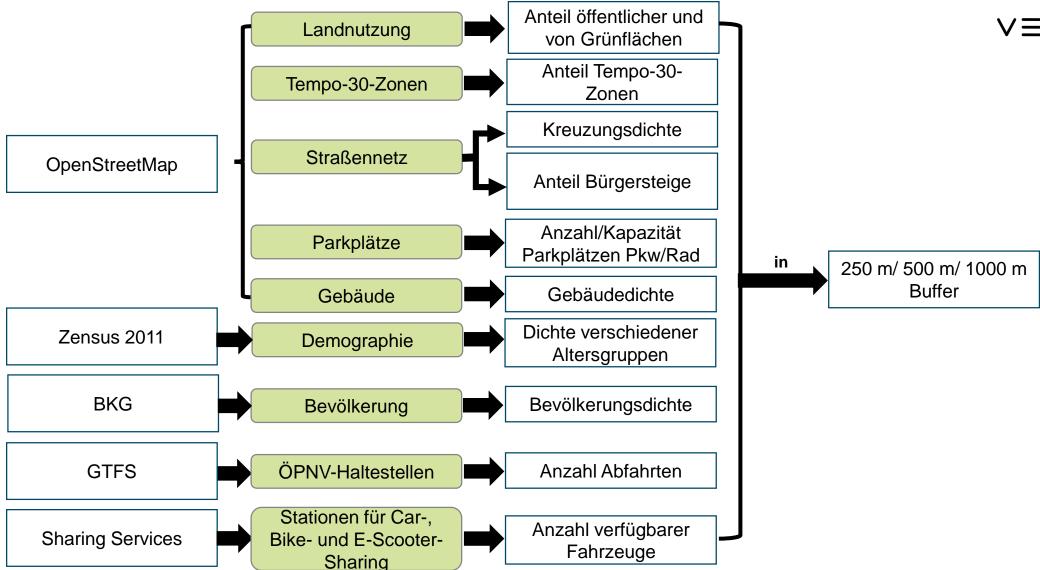
Literaturanalyse zur Identifikation wesentlicher Indikatoren

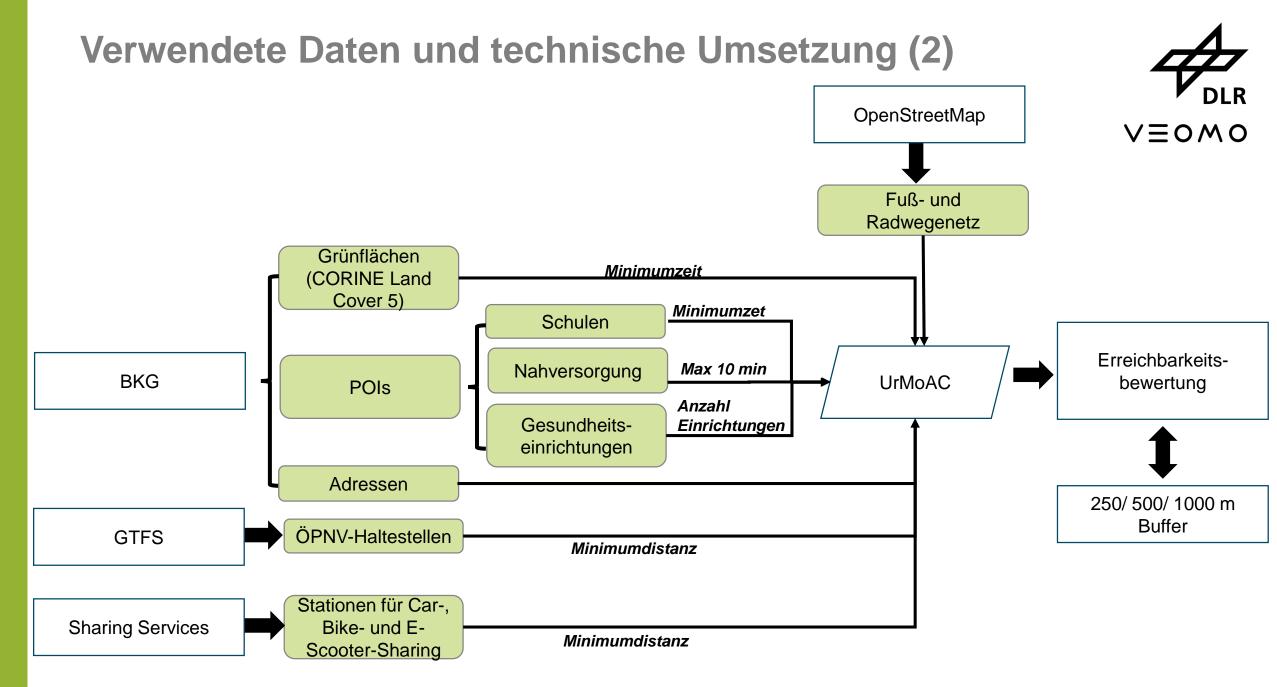
- Sammlung Indikatoren aus 15+ Publikationen
- Thematische Gruppierung der Indikatoren
- Filterung nach Kriterien wie räumlicher Bezug, Bezug zu Nachhaltigkeit und Mobilität
- Aufnahme häufig verwendeter Indikatoren
- Auswahl von 10 Indikatoren, die unterschiedliche Themen abbilden

Indikatoren für den NaMIx

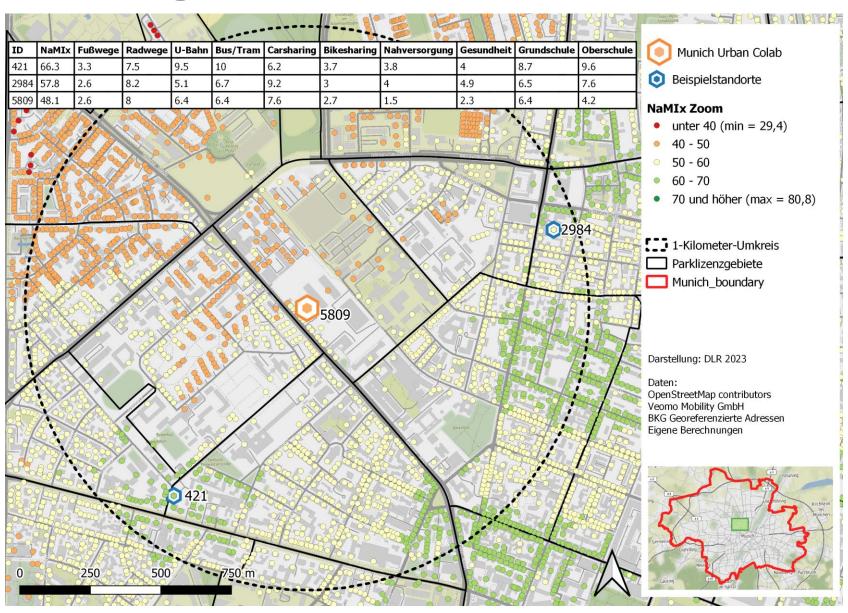
		V = 07110
Thema	Indikator	Begründung
Walkability	Anzahl Kreuzungen im Fußwegnetz pro Meter in 1 Kilometer Umkreis	Verkehrsvermeidung und -verlagerung
Bikeability	Anteil der Fahrradwege im Straßennetz in 1 Kilometer Umkreis	Verkehrsverlagerung
ÖPNV	Erreichbarkeit nächste Haltestelle des langsamen ÖPNV (Bus, Tram) (in Minuten)	Verkehrsverlagerung
ÖPNV	Erreichbarkeit nächste Haltestelle des schnellen ÖPNV (U-Bahn) (in Minuten)	Verkehrsverlagerung
Sharing	Anzahl verfügbarer Carsharing-Fahrzeuge in 1 Kilometer Umkreis	Höhere Effizienz
Sharing	Anzahl verfügbarer Leihräder in 1 Kilometer Umkreis	Höhere Effizienz
Nahversorgung	Anzahl Supermärkte zu Fuß (in 10 Minuten erreichbar)	Verkehrsvermeidung und -verlagerung
Gesundheitsversorgung	Anzahl Gesundheitseinrichtungen zu Fuß (in 10 Minuten erreichbar)	Verkehrsverlagerung
Bildung	Erreichbarkeit nächste Grundschule zu Fuß (in Minuten)	Verkehrsvermeidung und -verlagerung
Bildung	Erreichbarkeit nächste weiterführende Schule mit dem Fahrrad (in Minuten)	Verkehrsverlagerung

Der NaMIx formal

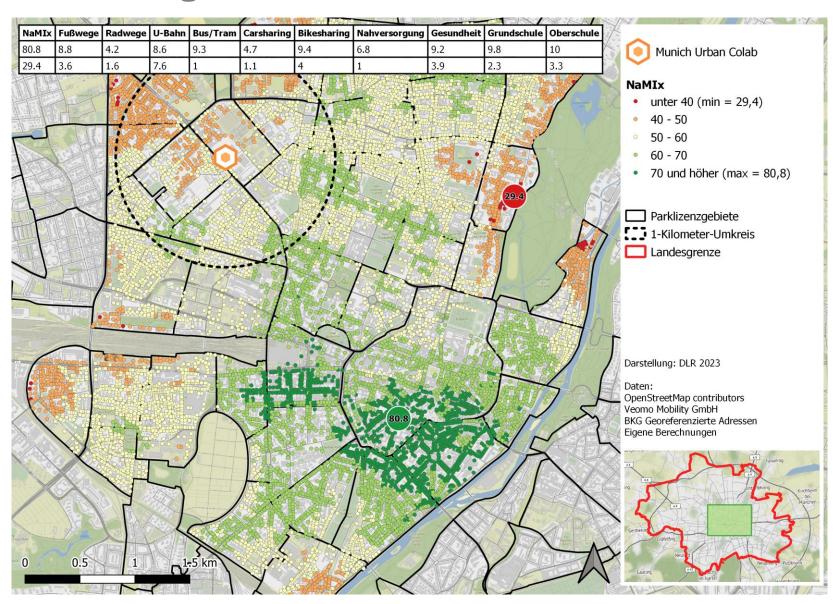



$$NaMIx = \sum_{iz} N'_{iz}$$
, $wobei\ N'_{iz} = 1 + \frac{(N_{iz} - \min(N_{iz}))(10 - 1)}{\max(N_{iz}) - \min(N_{iz})}$

- i Indikator
- z Adresse
- N Ursprungswert für den Indikator an der Adresse
- N' normalisierter Wert für den Indikator an der Adresse
- Normalisierung der Werte zwischen 1 (Minimum am "schlechtesten") und 10 (Maximum – am "besten") über alle ca. 14.000 Standorte
- Addition aller normalisierten Werte für jeden Standort


Verwendete Daten und technische Umsetzung (1)

Nachhaltige-Mobilität-Index NaMIx



- Grundlage:

 14.000 Adressen
 innerhalb Auswahl
 an Parklizenzgeb.
- offene Daten (Ausnahme: Sharing-Angebote)
- Python-Skript
- Open-Source Tool <u>UrMoAC</u> für Routing
- Darstellung (statisch) in QGIS

Nachhaltige-Mobilität-Index NaMIx

Zusammenführen der Einzel-Indikatoren zum NaMIx-Index

Die berechneten Einzel-Indikatoren werden für jedes Gebäude zum NaMIx-Index aufsummiert.

```
In [61]:
          namix full = {}
          for index, row in building buffers.iterrows():
              value = 0
              value += indicator_a1_normed[row.orig_id]
              value += indicator_b1_normed[row.orig_id]
              value += indicator_c1_normed[row.orig_id]
              value += indicator_c2_normed[row.orig_id]
              value += indicator_d1_normed[row.orig_id]
              value += indicator d2 normed[row.orig id]
              value += indicator_e1_normed[row.orig_id]
              value += indicator e2 normed[row.orig id]
              value += indicator f1 normed[row.orig id]
              value += indicator_f2_normed[row.orig_id]
              namix full[row.orig id] = value
In [62]:
          import namix.indicators
          ax = research area.plot(figsize=(8,8), color='grey')
          walk network.plot(ax=ax, color='black', linewidth=.1)
          colors = namix.indicators.to_colors(buildings, namix_full, "RdYlGn", 10, 100)
```

DEMONSTRATION DES NAMIX-TOOLS

a = buildings.plot(ax=ax, color=colors, markersize=1)

Stakeholder-Workshop

Welchen Bedarf gibt es und wie wird das Konzept bewertet?

Beteiligt:

- Kommune (MOR München)
- Immobilienentwicklung
- Wirtschaftsförderung

Zentrale Erkenntnisse:

- Bedarf an Daten hoch
- großes Interesse an Index
- Index an verschiedene Fragestellungen/User anpassen
- Einfachheit und Verständlichkeit entscheidend

Projektergebnisse im Überblick

- emmett-Beitrag erklärt Index und dessen Erarbeitung verständlich und anschaulich: https://emmett.io/article/der-nachhaltige-mobilitaet-index
- Ergebnisse in der Mobilithek:
 https://mobilithek.info/offers/628626532043988992
- Jupyter Notebook: https://github.com/DLR-VF/NaMIx
- Schlussbericht voraussichtlich Q4/2023 Q1/2024

